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Abstract

The well-known nonparametric maximum likelihood estimate of a distribution function Fy
is the empirical c.d.f. . Point estimates for many statistical functionals T(F) are taken to be
T(F). This article explores interval estimation of T'(Fp) by (inf r(F)2e T(F),supgpr)>. T(F)),
where R is a nonparametric likelihood ratio function for distributions. For the mean, under
regularity conditions, it is shown that the interval has asymptotic coverage a where —2logc is
xfl’ a)? the o quantile of the chisquare distribution on 1 degree of freedom. Thus, the theorem
of Wilks on the asymptotic distribution of the likelihood ratio has a nonparametric analog.
From the mean the result extends to a family of M-estimators. The n.l.r. intervals are related

to the bootstrap confidence intervals based on nonparametric tilting of Efron (1981, section

11).

* Work supported by an Office of Naval Research contract N00014-83-K-0472.



1. Introduction

Suppose the random variables Xj,..., X, are an i.i.d. sample from a distribution Fy.
The well-known non-parametric maximum likelihood estimate of Fy is F = -};E;;l 0x,, where

0x, is the distribution function of a point-mass at X;.

The likelihood function evaluated at a distribution F with mass w; > 0 on X; is

L(F) = H?=1 W

and this is easily seen to be maximized at ¥. In this article the function L is restricted to

distributions with support only on the observed sample. That is, it is assumed that > w; = 1.

The likelihood ratio function
R(F) = L(F)/L(F) = [T}, nw;

is defined on the same simplex as L. Throughout this paper F will be a generic member of

the simplex identified with the generic weights w;, ¢t =1,...,n.

Suppose we are interested in estimating the functional T, defined on the simplex and
on Fy. The nonparametric m.l.e. of T is T(F). If T is continuous on the simplex, as many
statistical functionals of practical interest are, then the image of T(:) over the part of the
simplex in which R(F) > ¢ is an interval by the compactness of that subset. The smaller ¢ is,
the larger the interval is, and the family of intervals is nested. The idea of this paper is to use
the intervals so obtained as a family of confidence intervals for T'. It should be mentioned that

the region R > ¢ is convex, since this fact could make the numerical optimization of T easier.

For fairly general parametric situations, Wilks (1938) showed that —2log(R) has an
asymptotic chisquare distribution, where R is the ratio of the likelihood evaluated at the
true parameter to the maximum of the likelihood function. This fact can be used to form
confidence intervals for the parameter that have asymptotically correct coverage. The errors
are of order 1/y/n. In some situations small sample distributions of the likelihood ratio are
available. Thus in the parametric likelihood ratio interval problem there is a reasonable way

to chose ¢.

In the completely nonparametric situation we cannot possibly be so lucky. The distribu-



tion theory for a likelihood ratio when the number of parameters is tending to infinity at the
same rate as the number of observations will be different. In particular, if the true distribution
is continuous it will always have a 0 likelihood ratio. If the functional T'(F) is badly behaved,
as is for example an indicator that is 1 iff F is continuous, or if T is the mean and Fy is Cauchy,
then this approach cannot possibly work. Fortunately, many statistical applications are much
less perverse, and the nonparametric likelihood ratio method is not degenerate. It is usually

the case that one can get T right without getting Fy right.

This article focuses attention on the mean although extensions to certain M-estimates

follow almost immediately.

In the next section, the nonparametric likelihood ratio interval estimates for the mean
are derived. Section 3 computes the asymptotic probability of covering the true mean by such
an interval. Theorem 1 in that section shows that the asymptotic coverage of the mean can be
obtained from the xfl) distriBution in the same way as in regular one-dimensional parametric
families with parametric likelihoods. In particular it follows that asymptotic non-parametric
likelihood ratio tests for the mean can be obtained. In section 4, the n.l.r. intervals are extended
to a class of M-estimates. Section 5 reconsiders the restriction to distributions supported on

the sample.

A similar approach was used by Thomas and Grunkemeier (1975) to get confidence inter-
vals for the survival function in the presence of censoring. They provide a heuristic argument
for the asymptotic chisquare distribution of their estimator. Their situation differs in that the
extrema of R over all distributions are usually equivalent to the extrema over distributions
with support on the observed (failure) times. The only exception is the somewhat degenerate
case where one seeks an interval estimate of the probability of survival past a time b that does

not lie between the smallest and largest observed failure time.

The motivation here was to find a way to compute nonparametric confidence intervals
without having to know which bootstrap technique to choose. That problem can be acute when,
for example, the bias-corrected percentile method and the percentile method choose intervals
skewed in opposing directions. (Recent bootstrap confidence interval methods may overcome

this difficulty. See Efron (1985).) In many parametric situations likelihood ratio intervals



automatically get the right skewness, and the thought was that nonparametric likelihood ratios

might also.

Ironically the resulting technique is similar to another bootstrap confidence interval tech-
nique, namely the nonparametric tilting bootstrap confidence intervals of Efron (1981,section
11). There are two differences. One difference is that the family of intervals is based on weights
(11.8) instead of (11.1) of Efron (1981). The other difference is that the chosen member of the
family of intervals is taken from the asymptotic chisquare result of section 3 rather than from
resampling from tilted distributions. For the mean this could be quite a large computational

saving. For more complicated functionals, the numerical optimization could be more work

than resampling.

2. N.l.r. interval estimates of the mean

The mean is written as a functional as
M(F) =3, wiX;.

To obtain the n.L.r. interval corresponding to ¢ one must maximize and minimize M (F) subject
to the constraints > w; = 1, [Jw; > ¢ and w; > 0. In practice it suffices to use the simpler
constraint [] w; = ¢. For most functionals of interest the product constraint is binding. Even
if it is not, a typical application involves calculating the bounds for many ¢ values and one

could use the equality constrained extrema to compute the inequality constrained values.

Using Lagrange multipliers, let
G=Y wiX;+ (1= wi)+ Az(log e — Y log(nuy)).

Setting the partial derivatives of G with respect to w; to zero yields

A2
W=

Xi— A
A2 can be obtained as a normalizing constant. For a given set of weights the maximum of M
is obtained when the largest weights are attached to the largest X;, and the minimum obtains
when the weights decrease with X;. Therefore A; cannot be in the interval (X(l),X(,,)), for

then the w; would not be monotone. This also guarantees that they must all be of the same



sign, that is, they must all be positive. For the minimum M = 3" wf"X.- where

oo — K= Xy —n")?
(X = Xy — )t

and for the maximum M*P = 3 w;X; where

WP = (X(n) — Xi + n*P) 1
t 22 (X(n) — X + nur)-t

for appropriate n*° and n¥P.

The n values can be found by a one dimensional zero-finding algorithm such as Newton’s
method. For ¢ near 1, the 5 values are very large and positive and the weights are nearly equal.

As c decreases the n values approach 0, and all the weight goes to the appropriate extreme

observation.

The limiting values of the bounds as ¢ approaches 0 are X(;) and X(y), the largest and
smallest observed values. This means that no n.l.r. confidence interval for the mean will go
outside the observed range of the data. This stands in contrast to parametric confidence
intervals which may easily go outside the observed range. The very extreme confidence limits
in the nonparametric case are obviously going to be suspect. It would be interesting to learn
how close to the edge one can safely go. In the parametric case the extreme confidence limits
will depend heavily on difficult to verify assumptions about the tails of the distributions in the

model and may therefore be equally dubious.

Instead of calculating the n values for a prescribed ¢, it is more convenient to calculate
¢, M¥? and M over a grid of ns. This allows the plotting of the log likelihood ratio as a

function of z, and the limits for any desired ¢ can be obtained via interpolation.

The following observations were generated from the standard normal distribution:
-22 -16 —-12 -10 -02 —-0.0 0.2 0.3 1.0 1.2,

the mean of the observations is -0.34 and the mean square is 1.24.

The nonparametric log likelihood ratio function for the mean based on these points is
plotted in figure 1 as a solid line. The unconnected dots represent the true log likelihood ratio

function under the assumption that the sample is from N (g, 1).



Figure 1 Parametric and Nonparametric

Likelihood Ratio Functions for a Normal Mean
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Figure 2 Parametric and Nonparametric

Likelihood Ratio Functions for a Normal Mean Square




Their squares are distributed as x%l), and the nonparametric log likelihood ratio function
for the mean square is plotted in figure 2 as a solid curve. The unconnected dots in figure 2

represent the true log likelihood ratio function under the assumption that the sample is from

N(0,0%).

The nonparametric log likelihood ratio functions look surprisingly like the parametric

ones, considering that only 10 points are available.

In figure 1 the n.l.r. interval endpoints were calculated for 5 values equal to 27 (X n)—X)
for § = —5,...,10. In figure 2 the largest and smallest squared observations were used in the
8.

The median also has a quite tractable algorithm for determining n.l.r. interval estimates,

as do other quantiles but these reduce to certain quantities based on the binomial distribution.

3. Asymptotics for N.l.r. Estimation of the Mean

In this section it is proved that if Fy has bounded support and is not degenerate that
the n.Lr. interval for the mean of Fy has asymptotic coverage & when —2logec = xfI, a)? the
a quantile of the chisquare distribution on 1 degree of freedom. The author conjectures that

the bounded support condition can be replaced by existence of some moment higher than the

first.

Theorem 1

Let X; € [-M, M] be i.i.d. from a nondegenerate distribution Fo. If
Xy =supy o, w;X; and Xp =inf >, wX;
where both extrema are taken over R(F) = [T}, nw; > ¢, then

P(XL < E(X1) £ Xy) — P(xfl, < -2logc).

Proof: Without loss of generality E(X;) = 0. P(X(1) < 0,X(n) > 0) — 1, since Fp is not

degenerate, so we can assume that there is at least one observation of each sign. It follows that

Re =sup{I_[nw,-| Ew.-:l,Zw;X,-:O}



exists.

Now X7 < 0 < Xy iff ¢ £ R°. We show that —2log B° has an asymptotic chisquare

distribution.

To find R°, let

G =Y log(nw;) + (1 — 3 wi) + nA(0 - 3 wiX;).

Setting dG /dw; = O one obtains

_ 1

T+ nAX;

and summing w;8G/dw; shows that v = n. It follows that

w;

log(R°) = ) log (m%x) = — T log(1+ A°X;)
where A° satisfies
1 , .
0=—3 maix; =9()°). (1)

The function g(\) defined by (1) is finite in an interval containing the origin. Since
g(x) = -1 ?:1(1%\‘7.-)2 < 0 (recall that not all X; = 0), g is strictly decreasing in the
interval and equation (1) is easily seen to have a unique solution in the interval (—-X, (n 3 ,—X (‘d .

Note also that g(0) = X, the sample mean.

A° as defined by (1) is an M-estimate, although not one of location, with ¢(X,) =
X/(1+ X)). The M-estimate applied to Fy is O since Fo has mean zero. Since E(¢(X,\)) is
positive when A < 0 and negative when A > 0 it follows by proposition 3.2.1 of Huber (1981)
that A° — O strongly.

Expand h = g~! in a Taylor’s series about X, and evaluate it at O to get
h(0) = X° = A(X) + (0 - X)H'(X) + (0 — X)?h"(¢)

where ¢ is between 0 and X. Now h'(X) = 1/¢'(0) and h"(&) = —¢"(n)/g'(n)® where n = h(¢)

is between 0 and A°. Therefore

. X -2 Tl
X ez ]?)

9



Let r° denote the second term in A°. A simple bound is

o] < 9% in-2 1/n 3| X2 (14 |n|M)®
S X G R s X2 (1= M)

Since || < |A°| — 0 a.s. we can assume that |n| is a small fraction of 1/M. By the strong law

of large numbers applied to both |X;|® and X?, the probability is arbitrarily close to 1 that
Ir°| < 3X’n2E(|Xy|%)/ E(X?)% = Op(n=3). By the central limit theorem \/n(A° — r°) tends
to the standard normal distribution and so A° = O,(n~1/2).

Now P(max |A\°X;| > .5) — 0 so we may use the same Taylor expansion of log(1 + A\°X;)

for all sufficiently large n:
log(R®) = — 3" log(1 + A°X;)
= -3 (A°X; - 3(A°X;)? +m) where|n;| < |A°X;[3/3

= —n_X_z\° -+ %?X’z - E i

= X n— X
= ° (L 1 40)2 .
nX(_2+r)+ X(_2+r) > i

—2 —2
—_ oY n X o5 n 022 .
_—n}_:z—r nX+E?+Tﬂ.X+§f .X —E:ﬂ.
nX’ N
=2 L Zpo2x2 -8/2
355 T3 X+ n0(n %)

1 n - -
= _E(X%l) + 0p(1)) + EOP(" 6)Op(l) + Op(n 1/2)
__1,
=-2Xny+ op(1)
so —2log R° — xfl) in distribution as required.l

The error in the approximation is of order 1/4/n since the central limit theorem operates
on the leading term at that rate and the other term is of that rate. This is the same rate

obtained by Wilks (1938) for the parametric case.

4. N.l.r. intervals for M-estimates

The estimation of the n.l.r. confidence intervals for M-estimates is similar to that for the

mean and the asymptotic chisquare distribution carries over too.

Let T be a statistical functional defined by
0= [9(X,T)dF(X)

10



where ¥(X, r) is nondecreasing in X, continuous and nonincreasing in r, and bounded. This
covers most commonly used robust M-estimates of location; the main quibble from a practical

point of view is that the concomitant estimation of the scale constant is being ignored.

Let I;(F) = dT(F)/dw;, the empirical influence of T' at X;. The upper bound of the

n.l.r. interval for T for some c is

sup T(F).
R(F)2e

The supremum is attained at weights satisfying

¢ 1, o
D7 ERE

by the same Langrangian multiplier method as was used in the case of the mean. The infimum

is obtained similarly. As in the case of the mean the weights can be rewritten
w;  (I(n) — Li(F) +n)™?

for appropriate n where I, is the influence of X(,) and is also the largest of the influences.

The big difference here is that the I;(¥') depend on the w; through F =} w;x;, whereas
for the mean I;(F) = X; is fixed. Therefore even for a fixed n the corresponding point on
the likelihood ratio curve will have to be estimated iteratively. Another approach is to obtain
the likelihood ratio function for the M-estimate from that of the mean of (X, r) for a grid of

values of 7. This idea underlies the proof of Theorem 2 below.

Most of the work of extending the asymptotic distribution from the mean to the M-
estimates is done via the following lemma.
Lemma 1
Let T(F) be the solution to 0 = [ (X, T)dF(X) and let 7o = T(Fo). Assume that ¢(X, ) is
nondecreasing in X, and continuous and nonincreasing in r, and that T(F) exists for all F.
Let 2 = supp>, T(F), let M*P = supgs. Y wi¥(X;,70) and define r'> and M with infima
replacing suprema. Then 1y € (r'°,7%P) implies 0 € [M'°, M*?P] and 0 € (M, M*P) implies
10 € (rl°,7%P).
Proof: Suppose 1o < 7P, Then each ¥(X;, 1) = ¥(X;, 7%P) and hence supps. > with(X;, 0) >

SUPR>. o Wit (X, 7F) i.e. MY > supgy. > wi$(X;, 7). This supremum is nonnegative

11



since otherwise there would be weights w; satisfying the likelihood ratio constraint for which
Yo wiY(Xi, 7*P) < 0. But then r' = T'(3° w}8x,) exists by the assumption on 7" and ' > 7% by
the continuity assumption, contradicting the definition of r%?. Therefore M“P > 0. A similar

argument shows that ro > 7' = M < 0, and so the first claim is proved.

Suppose M*“P > 0. Then there are weights w; satisfying the likelihood ratio constraint
for which 3 w?4(X;, 70) > 0. As above there exists a 7' > 7 for which Y w!¢(X;, ') =0 and
the definition of 7%P implies that r%? > ' > 7. Similarly M < 0= r* < 5. I

Now we can extend the asymptotic chisquare distribution to M-estimates via
Theorem 2
Let T(F) be the solution of { (X, T)dF(X) = 0 be an M-estimate satisfying the conditions of
Lemma 1. Suppose also that i is bounded. Let X; be an i.i.d. sample of size n from Fy with
10 = T(Fp). If —2logec = X%l,a) then P(infgy. T(F) < 70 < supg>, T(F)) — a.

Proof: By lemma 1
P(}igcz wih(X;,70) <0 < sup D wi(Xi, 7))
SP(}i&ch(F) <m< ;112;: T(F))

SP(}znzf;ZWﬂb(Xi,fo) <0< ;uzpczwﬁﬁ(xi,fo))
and by Theorem 1 both of the bounding probabilities tend to a. B
5. Final remarks

The restriction to distribution functions with support on the observations is unnatural in
a likelihood setting. We certainly do not believe that the true distribution is in the simplex
determined by the sample. That n.l.r. intervals can work is just a sampling property of the

random simplices we observe.

For the mean, the extrema that define the n.Lr. interval equal the extrema over all dis-
tributions with support on the closed interval [X(l),X(,,)]. This is easy to see, since if a
distribution puts any probability on a set in the interval that contains no observations that
probability can be “swept” to one or the other end producing a more extreme mean with no
reduction in the likelihood ratio. Thus the extrema can be said to be taken over an uncount-

ably infinite family of distributions. Without the restriction on the endpoints of the support,

12



weight € can be put on a large unobserved X and give rise to an arbitrarily large mean with a

likelihood ratio arbitrarily close to 1, and every n.l.r. interval becomes the whole real line.

The situation is different for M-estimators T' with monotone ¢ function and bounded
influence (including the mean if we know a bound for X). Then it is easy to show that the
constrained extrema of T over all distributions are not much different than those over the
simplex and that the difference tends to zero as n — co. A sketch of the proof is as follows.
Consider the upper bound of the confidence interval. Any weight off the simplex might as well
be put at oo (or at a known bound for X), so that the corresponding (oo, r) equals the bound
on ¥. The amount of weight w* that can be put at co while preserving R > ¢ > 0 is bounded
by 1 — /" + ¢1/2/n — 0. View this as contamination. The supremum of the contaminated
M-estimate subject to the likelihood ratio condition is less than the uncontaminated supremum
plus the greatest difference that the contamination could make at any underlying distribution.
This latter quantity is O(w* B) where B is the bound on the influence function of T'. It follows
that n.Lr. intervals for T' in which the limits are taken over all distributions on the line will

have the same asymptotic coverage as those based on distributions supported on the sample.

Most bootstrap confidence interval techniques also work exclusively with distributions
supported on the sample. An exception is Hjort (1985) who constructs a Bayesian bootstrap

based on a Dirichlet prior.
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